
There are some suggestions with respect to the white paper.

The words “assets”, “data”, and “data assets” are used in the different example use cases (chapter 2)
with slightly different meanings. Somtimes assets refer to fungible assets1 and sometimes to non-
fungible assets and sometimes an asset can be duplicated on the different ledger (such as data
packages) and sometimes talking about an asset implies that it can only be active/alive in one ledger
at any point in time.

Even so these words are used in everyday language interchangeably, I suggest to define them
precisely in the white paper and use a consistent terminology throughout all the example use cases.
Some of the example use cases might apply to several object types, such as the “2.1 Ethereum to
Quorum Asset Transfer” might apply to fungible and non-fungible assets (FA and NFA), whereas
the “2.5 Healthcare Data Sharing with Access Control Lists” probably only applies to data (D)
objects.

So far I would differentiate between three types of objects that are stored on ledgers and that cactus
interacts within the example use cases:
1. FA = fungible asset (alternative naming: value token/coin) – cannot be duplicated on different
ledgers
2. NFA = non-fungible asset (alternative naming: asset) – cannot be duplicated on different ledgers
3. D = data – can be duplicated on different ledgers

Difference between an asset (FA or NFA) and data (D):
The same data package can have several representations on different ledgers in active mode while
an asset (FA or NFA) can only have one representation active at any time, i.e., an asset exists only
on one blockchain while it is locked/burned on all other blockchains. A data package that was once
created as a representation of another data package might divert from its original one over time
because different ledgers might invoke different transactions on the data packages over time.

There is this table on the website “https://github.com/hyperledger/cactus” explaining the 5 use cases
that cactus will be able to handle in the future with respect to value V (means numerical assets (e.g.
money)) and data D (means non-numerical assets (e.g. ownership proof)) transfers. The 5 use cases
mentioned are as follows:
1. value transfer (V -> V)
2. value-data transfer (V -> D)
3. data-value transfer (D -> V)
4. data transfer (D->D)
5. data merge (D<->D)

1
Difference between fungible and non-fungible asset: A fungible asset is an asset that can be
swapped with another one, like a currency. For example, if I have a 1 USD bill, it can be swapped
for any other 1 USD bill. It does not matter which 1 USD bill I own. The same is true for any
Bitcoin, Ether, A non-fungible asset is an asset that cannot be swapped for another. For example,
a house is a non-fungible asset. Each house has some unique properties that makes it different. The
same applies to e.g. cryptokitties or a product that is tracked on the blockchain in a supply chain.
There are two different standards for fungible and non-fungible assets on the Ethereum network
which might be useful for further reading (ERC-20 Fungible Token Standard and ERC-721 Non-
Fungible Token Standard).

https://github.com/hyperledger/cactus

I suggest extending these 5 use cases to a table which allows a new person to easily identify which
example use case is best suitable for them.

As a person who is considering using cactus, I might already have a concrete business use case and
idea in mind how my two blockchains look like, which objects they are dealing with (NFA, FA or
D) and if I want to implement ledger transfer/ ledger coordination or ledger entry point
coordination. So far a new user has to go through all the example use cases to find one related to
their problem.

I came up with this preliminary table which still needs a lot of improvement and also some help in
identifying in which row/column the example use cases from chapter 2 belong to. This table might
also help to find new example use cases that have not been included in chapter 2 yet.

Type I Type II Type III Type IV Type V Type VI

State transition type in
blockchain A / B:

Invoke (write
transaction), Query

(read-only transaction)

Invoke/Invoke
or

Query/Invoke
(Query in case

data is not
locked/deleted
in blockchain

A)

Invoke/
Invoke

or
Query/I
nvoke
(Query
in case
data is

not
locked/
deleted

in
blockch
ain A)

Invoke/
Invoke

Invoke/
Query

or
Query/Inv

oke

Query/
Query

Invoke/
Invoke

or
Invoke/
Query

or
Query/
Invoke

or
Query/
Query

Interaction type Ledger transfer between
blockchains [1]

Ledger coordination between
blockchains [2]

Ledger
entry point
coordinati

on [3]

Direction type one-directional bi-
directio

nal

NA NA NA

Asset/
Data

type of
Blockch

ain A

Asset/Data
type of

Blockchain B

FA FA 2.1 Ethereum to
Quorum Asset

Transfer
(if asset is FA)
2.4 Stable Coin

Pegged to
Other Currency

2.7 End
User

Wallet
Authentica
tion/Autho

rization

NFA FA Figure 1
(see

below)

FA NFA Figure 1
(see

below)

NFA NFA 2.1 Ethereum to
Quorum Asset

Transfer (if
asset is NFA)

FA D 2.2
Escrowed

Sale of
Data for
Coins (if
data is
read on

one
ledger

and
ownershi
p change

of the
coins is
recorded

on the
other

ledger)

NFA D

D FA 2.2
Escrowed

Sale of
Data for
Coins (if
data is
read on

one
ledger

and
ownershi
p change

of the
coins is
recorded

on the
other

ledger)

D NFA

D D Data transfer
(D ->D)

2.8 Blockchain

Data
merge
(D<-
>D)

2.5
Healthcar

e Data
Sharing

2.5
Healthca
re Data
Sharing

Migration 2.6
Integrat

e
Existing

Food
Traceab

ility
Solution

s

with
Access
Control

Lists
(if data is
read on

one
ledger

and
written to
the other
ledger)

with
Access
Control
Lists (if
data is
read

from two
independ

ent
ledgers),

Figure 1 (from fujitsu)

There seems to be three different types of modus operandi that cactus is able to support (ledger
transfer/ ledger coordination and ledger entry point coordination). Each of these operandi has a
different degree of interference with the ledger of the connected blockchains. The ledger transfer
has a high degree of interference since the livelihood of a blockchain can be reduced in case too
many assets/data are locked/burned in a connected blockchain. The ledger coordination has less
degree of interference since all assets/data stay in their respective blockchain environment. The
ledger entry point coordination has no degree of interence with the ledger itself.

[1] Ledger transfer between blockchains is defined as follows: An asset gets locked/burned on one
blockchain and then a representation of the same asset gets released in the other blockchain. There
are never two representations of the same asset alive at any time. Data is an exception since the
same data can be transfered to several blockchains.

[2] Ledger coordination between blockchains is defined as follows: A transaction (read or write) is
performed in Blockchain A and another transaction (read or write) is performed in blockchain B.
There is no asset/data/coin leaving any blockchain environment. The two blockchain environments
are isolated but because cactus coordinates both transactions they are done atomically. That means
either both transactions are valid/ committed successfully or none of the transactions are
valid/committed successfully.

[3] Ledger entry point coordination between blockchains is defined as follows: Cactus organises
end-user wallet authentication/ authorization but does not interfere with wich transaction is
committed on any of the connected blockchains. Cactus is just forwarding any of the transactions
given by an end-user to the corresponding blockchain.

Legend:

Abegin = State of asset A at the beginning of transaction
Aend = State of asset A at the end of transaction
Ãend = Representation of asset A at the end of all transactions

Bbegin = State of asset B at the beginning of transaction

Bend = State of asset B at the end of transaction
B̃end = Representation of asset B at the end of all transactions

Tx
1 = Invoke transaction 1

Tx
2 = Invoke transaction 2

